3.92 \(\int (a+b \tan (e+f x)) \sqrt{c+d \tan (e+f x)} (A+B \tan (e+f x)+C \tan ^2(e+f x)) \, dx\)

Optimal. Leaf size=224 \[ \frac{2 (a B+A b-b C) \sqrt{c+d \tan (e+f x)}}{f}-\frac{(b+i a) \sqrt{c-i d} (A-i B-C) \tanh ^{-1}\left (\frac{\sqrt{c+d \tan (e+f x)}}{\sqrt{c-i d}}\right )}{f}+\frac{(-b+i a) \sqrt{c+i d} (A+i B-C) \tanh ^{-1}\left (\frac{\sqrt{c+d \tan (e+f x)}}{\sqrt{c+i d}}\right )}{f}-\frac{2 (-5 a C d-5 b B d+2 b c C) (c+d \tan (e+f x))^{3/2}}{15 d^2 f}+\frac{2 b C \tan (e+f x) (c+d \tan (e+f x))^{3/2}}{5 d f} \]

[Out]

-(((I*a + b)*(A - I*B - C)*Sqrt[c - I*d]*ArcTanh[Sqrt[c + d*Tan[e + f*x]]/Sqrt[c - I*d]])/f) + ((I*a - b)*(A +
 I*B - C)*Sqrt[c + I*d]*ArcTanh[Sqrt[c + d*Tan[e + f*x]]/Sqrt[c + I*d]])/f + (2*(A*b + a*B - b*C)*Sqrt[c + d*T
an[e + f*x]])/f - (2*(2*b*c*C - 5*b*B*d - 5*a*C*d)*(c + d*Tan[e + f*x])^(3/2))/(15*d^2*f) + (2*b*C*Tan[e + f*x
]*(c + d*Tan[e + f*x])^(3/2))/(5*d*f)

________________________________________________________________________________________

Rubi [A]  time = 0.628311, antiderivative size = 224, normalized size of antiderivative = 1., number of steps used = 10, number of rules used = 7, integrand size = 45, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.156, Rules used = {3637, 3630, 3528, 3539, 3537, 63, 208} \[ \frac{2 (a B+A b-b C) \sqrt{c+d \tan (e+f x)}}{f}-\frac{(b+i a) \sqrt{c-i d} (A-i B-C) \tanh ^{-1}\left (\frac{\sqrt{c+d \tan (e+f x)}}{\sqrt{c-i d}}\right )}{f}+\frac{(-b+i a) \sqrt{c+i d} (A+i B-C) \tanh ^{-1}\left (\frac{\sqrt{c+d \tan (e+f x)}}{\sqrt{c+i d}}\right )}{f}-\frac{2 (-5 a C d-5 b B d+2 b c C) (c+d \tan (e+f x))^{3/2}}{15 d^2 f}+\frac{2 b C \tan (e+f x) (c+d \tan (e+f x))^{3/2}}{5 d f} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*Tan[e + f*x])*Sqrt[c + d*Tan[e + f*x]]*(A + B*Tan[e + f*x] + C*Tan[e + f*x]^2),x]

[Out]

-(((I*a + b)*(A - I*B - C)*Sqrt[c - I*d]*ArcTanh[Sqrt[c + d*Tan[e + f*x]]/Sqrt[c - I*d]])/f) + ((I*a - b)*(A +
 I*B - C)*Sqrt[c + I*d]*ArcTanh[Sqrt[c + d*Tan[e + f*x]]/Sqrt[c + I*d]])/f + (2*(A*b + a*B - b*C)*Sqrt[c + d*T
an[e + f*x]])/f - (2*(2*b*c*C - 5*b*B*d - 5*a*C*d)*(c + d*Tan[e + f*x])^(3/2))/(15*d^2*f) + (2*b*C*Tan[e + f*x
]*(c + d*Tan[e + f*x])^(3/2))/(5*d*f)

Rule 3637

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (B_.)*tan[(e
_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(b*C*Tan[e + f*x]*(c + d*Tan[e + f*x])
^(n + 1))/(d*f*(n + 2)), x] - Dist[1/(d*(n + 2)), Int[(c + d*Tan[e + f*x])^n*Simp[b*c*C - a*A*d*(n + 2) - (A*b
 + a*B - b*C)*d*(n + 2)*Tan[e + f*x] - (a*C*d*(n + 2) - b*(c*C - B*d*(n + 2)))*Tan[e + f*x]^2, x], x], x] /; F
reeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[c^2 + d^2, 0] &&  !LtQ[n, -1]

Rule 3630

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (
f_.)*(x_)]^2), x_Symbol] :> Simp[(C*(a + b*Tan[e + f*x])^(m + 1))/(b*f*(m + 1)), x] + Int[(a + b*Tan[e + f*x])
^m*Simp[A - C + B*Tan[e + f*x], x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] && NeQ[A*b^2 - a*b*B + a^2*C, 0]
&&  !LeQ[m, -1]

Rule 3528

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(d
*(a + b*Tan[e + f*x])^m)/(f*m), x] + Int[(a + b*Tan[e + f*x])^(m - 1)*Simp[a*c - b*d + (b*c + a*d)*Tan[e + f*x
], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && GtQ[m, 0]

Rule 3539

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(c
 + I*d)/2, Int[(a + b*Tan[e + f*x])^m*(1 - I*Tan[e + f*x]), x], x] + Dist[(c - I*d)/2, Int[(a + b*Tan[e + f*x]
)^m*(1 + I*Tan[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0]
&& NeQ[c^2 + d^2, 0] &&  !IntegerQ[m]

Rule 3537

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(c*
d)/f, Subst[Int[(a + (b*x)/d)^m/(d^2 + c*x), x], x, d*Tan[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, m}, x] &&
NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && EqQ[c^2 + d^2, 0]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int (a+b \tan (e+f x)) \sqrt{c+d \tan (e+f x)} \left (A+B \tan (e+f x)+C \tan ^2(e+f x)\right ) \, dx &=\frac{2 b C \tan (e+f x) (c+d \tan (e+f x))^{3/2}}{5 d f}-\frac{2 \int \sqrt{c+d \tan (e+f x)} \left (\frac{1}{2} (2 b c C-5 a A d)-\frac{5}{2} (A b+a B-b C) d \tan (e+f x)+\frac{1}{2} (2 b c C-5 b B d-5 a C d) \tan ^2(e+f x)\right ) \, dx}{5 d}\\ &=-\frac{2 (2 b c C-5 b B d-5 a C d) (c+d \tan (e+f x))^{3/2}}{15 d^2 f}+\frac{2 b C \tan (e+f x) (c+d \tan (e+f x))^{3/2}}{5 d f}-\frac{2 \int \sqrt{c+d \tan (e+f x)} \left (\frac{5}{2} (b B-a (A-C)) d-\frac{5}{2} (A b+a B-b C) d \tan (e+f x)\right ) \, dx}{5 d}\\ &=\frac{2 (A b+a B-b C) \sqrt{c+d \tan (e+f x)}}{f}-\frac{2 (2 b c C-5 b B d-5 a C d) (c+d \tan (e+f x))^{3/2}}{15 d^2 f}+\frac{2 b C \tan (e+f x) (c+d \tan (e+f x))^{3/2}}{5 d f}-\frac{2 \int \frac{\frac{5}{2} d (b B c+b (A-C) d-a (A c-c C-B d))-\frac{5}{2} d (A b c+a B c-b c C+a A d-b B d-a C d) \tan (e+f x)}{\sqrt{c+d \tan (e+f x)}} \, dx}{5 d}\\ &=\frac{2 (A b+a B-b C) \sqrt{c+d \tan (e+f x)}}{f}-\frac{2 (2 b c C-5 b B d-5 a C d) (c+d \tan (e+f x))^{3/2}}{15 d^2 f}+\frac{2 b C \tan (e+f x) (c+d \tan (e+f x))^{3/2}}{5 d f}+\frac{1}{2} ((a-i b) (A-i B-C) (c-i d)) \int \frac{1+i \tan (e+f x)}{\sqrt{c+d \tan (e+f x)}} \, dx+\frac{1}{2} ((a+i b) (A+i B-C) (c+i d)) \int \frac{1-i \tan (e+f x)}{\sqrt{c+d \tan (e+f x)}} \, dx\\ &=\frac{2 (A b+a B-b C) \sqrt{c+d \tan (e+f x)}}{f}-\frac{2 (2 b c C-5 b B d-5 a C d) (c+d \tan (e+f x))^{3/2}}{15 d^2 f}+\frac{2 b C \tan (e+f x) (c+d \tan (e+f x))^{3/2}}{5 d f}-\frac{((i a-b) (A+i B-C) (c+i d)) \operatorname{Subst}\left (\int \frac{1}{(-1+x) \sqrt{c+i d x}} \, dx,x,-i \tan (e+f x)\right )}{2 f}+\frac{((a-i b) (A-i B-C) (i c+d)) \operatorname{Subst}\left (\int \frac{1}{(-1+x) \sqrt{c-i d x}} \, dx,x,i \tan (e+f x)\right )}{2 f}\\ &=\frac{2 (A b+a B-b C) \sqrt{c+d \tan (e+f x)}}{f}-\frac{2 (2 b c C-5 b B d-5 a C d) (c+d \tan (e+f x))^{3/2}}{15 d^2 f}+\frac{2 b C \tan (e+f x) (c+d \tan (e+f x))^{3/2}}{5 d f}-\frac{((a+i b) (A+i B-C) (c+i d)) \operatorname{Subst}\left (\int \frac{1}{-1+\frac{i c}{d}-\frac{i x^2}{d}} \, dx,x,\sqrt{c+d \tan (e+f x)}\right )}{d f}+\frac{((i a+b) (A-i B-C) (i c+d)) \operatorname{Subst}\left (\int \frac{1}{-1-\frac{i c}{d}+\frac{i x^2}{d}} \, dx,x,\sqrt{c+d \tan (e+f x)}\right )}{d f}\\ &=-\frac{(i a+b) (A-i B-C) \sqrt{c-i d} \tanh ^{-1}\left (\frac{\sqrt{c+d \tan (e+f x)}}{\sqrt{c-i d}}\right )}{f}+\frac{(i a-b) (A+i B-C) \sqrt{c+i d} \tanh ^{-1}\left (\frac{\sqrt{c+d \tan (e+f x)}}{\sqrt{c+i d}}\right )}{f}+\frac{2 (A b+a B-b C) \sqrt{c+d \tan (e+f x)}}{f}-\frac{2 (2 b c C-5 b B d-5 a C d) (c+d \tan (e+f x))^{3/2}}{15 d^2 f}+\frac{2 b C \tan (e+f x) (c+d \tan (e+f x))^{3/2}}{5 d f}\\ \end{align*}

Mathematica [A]  time = 1.96048, size = 220, normalized size = 0.98 \[ \frac{15 d (b+i a) (A-i B-C) \left (\sqrt{c+d \tan (e+f x)}-\sqrt{c-i d} \tanh ^{-1}\left (\frac{\sqrt{c+d \tan (e+f x)}}{\sqrt{c-i d}}\right )\right )+15 d (b-i a) (A+i B-C) \left (\sqrt{c+d \tan (e+f x)}-\sqrt{c+i d} \tanh ^{-1}\left (\frac{\sqrt{c+d \tan (e+f x)}}{\sqrt{c+i d}}\right )\right )+\frac{2 (5 a C d+5 b B d-2 b c C) (c+d \tan (e+f x))^{3/2}}{d}+6 b C \tan (e+f x) (c+d \tan (e+f x))^{3/2}}{15 d f} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*Tan[e + f*x])*Sqrt[c + d*Tan[e + f*x]]*(A + B*Tan[e + f*x] + C*Tan[e + f*x]^2),x]

[Out]

((2*(-2*b*c*C + 5*b*B*d + 5*a*C*d)*(c + d*Tan[e + f*x])^(3/2))/d + 6*b*C*Tan[e + f*x]*(c + d*Tan[e + f*x])^(3/
2) + 15*(I*a + b)*(A - I*B - C)*d*(-(Sqrt[c - I*d]*ArcTanh[Sqrt[c + d*Tan[e + f*x]]/Sqrt[c - I*d]]) + Sqrt[c +
 d*Tan[e + f*x]]) + 15*((-I)*a + b)*(A + I*B - C)*d*(-(Sqrt[c + I*d]*ArcTanh[Sqrt[c + d*Tan[e + f*x]]/Sqrt[c +
 I*d]]) + Sqrt[c + d*Tan[e + f*x]]))/(15*d*f)

________________________________________________________________________________________

Maple [B]  time = 0.148, size = 3028, normalized size = 13.5 \begin{align*} \text{output too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c+d*tan(f*x+e))^(1/2)*(a+b*tan(f*x+e))*(A+B*tan(f*x+e)+C*tan(f*x+e)^2),x)

[Out]

1/4/f*ln((c+d*tan(f*x+e))^(1/2)*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)-d*tan(f*x+e)-c-(c^2+d^2)^(1/2))*B*(2*(c^2+d^2)^(
1/2)+2*c)^(1/2)*a-1/4/f*ln((c+d*tan(f*x+e))^(1/2)*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)-d*tan(f*x+e)-c-(c^2+d^2)^(1/2)
)*C*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)*b+1/4/f/d*ln((c+d*tan(f*x+e))^(1/2)*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)-d*tan(f*x+
e)-c-(c^2+d^2)^(1/2))*A*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)*(c^2+d^2)^(1/2)*a-1/4/f/d*ln((c+d*tan(f*x+e))^(1/2)*(2*(
c^2+d^2)^(1/2)+2*c)^(1/2)-d*tan(f*x+e)-c-(c^2+d^2)^(1/2))*A*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)*a*c-1/4/f/d*ln((c+d*
tan(f*x+e))^(1/2)*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)-d*tan(f*x+e)-c-(c^2+d^2)^(1/2))*B*(2*(c^2+d^2)^(1/2)+2*c)^(1/2
)*(c^2+d^2)^(1/2)*b+1/4/f/d*ln(d*tan(f*x+e)+c+(c+d*tan(f*x+e))^(1/2)*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)+(c^2+d^2)^(
1/2))*A*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)*a*c+1/4/f/d*ln(d*tan(f*x+e)+c+(c+d*tan(f*x+e))^(1/2)*(2*(c^2+d^2)^(1/2)+
2*c)^(1/2)+(c^2+d^2)^(1/2))*B*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)*(c^2+d^2)^(1/2)*b-1/4/f/d*ln(d*tan(f*x+e)+c+(c+d*t
an(f*x+e))^(1/2)*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)+(c^2+d^2)^(1/2))*B*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)*b*c+2/f*B*(c+d
*tan(f*x+e))^(1/2)*a+2/3/f/d*B*(c+d*tan(f*x+e))^(3/2)*b+2/3/f/d*C*(c+d*tan(f*x+e))^(3/2)*a-1/4/f*ln(d*tan(f*x+
e)+c+(c+d*tan(f*x+e))^(1/2)*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)+(c^2+d^2)^(1/2))*B*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)*a+1
/4/f*ln(d*tan(f*x+e)+c+(c+d*tan(f*x+e))^(1/2)*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)+(c^2+d^2)^(1/2))*C*(2*(c^2+d^2)^(1
/2)+2*c)^(1/2)*b-1/4/f*ln(d*tan(f*x+e)+c+(c+d*tan(f*x+e))^(1/2)*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)+(c^2+d^2)^(1/2))
*A*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)*b+1/4/f*ln((c+d*tan(f*x+e))^(1/2)*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)-d*tan(f*x+e)-
c-(c^2+d^2)^(1/2))*A*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)*b-1/f*d/(2*(c^2+d^2)^(1/2)-2*c)^(1/2)*arctan(((2*(c^2+d^2)^
(1/2)+2*c)^(1/2)-2*(c+d*tan(f*x+e))^(1/2))/(2*(c^2+d^2)^(1/2)-2*c)^(1/2))*A*a-2/f*C*b*(c+d*tan(f*x+e))^(1/2)+2
/f*A*(c+d*tan(f*x+e))^(1/2)*b+1/4/f/d*ln(d*tan(f*x+e)+c+(c+d*tan(f*x+e))^(1/2)*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)+(
c^2+d^2)^(1/2))*C*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)*(c^2+d^2)^(1/2)*a-1/4/f/d*ln(d*tan(f*x+e)+c+(c+d*tan(f*x+e))^(
1/2)*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)+(c^2+d^2)^(1/2))*C*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)*a*c-1/4/f/d*ln(d*tan(f*x+e
)+c+(c+d*tan(f*x+e))^(1/2)*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)+(c^2+d^2)^(1/2))*A*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)*(c^2
+d^2)^(1/2)*a+1/4/f/d*ln((c+d*tan(f*x+e))^(1/2)*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)-d*tan(f*x+e)-c-(c^2+d^2)^(1/2))*
B*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)*b*c-1/4/f/d*ln((c+d*tan(f*x+e))^(1/2)*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)-d*tan(f*x+
e)-c-(c^2+d^2)^(1/2))*C*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)*(c^2+d^2)^(1/2)*a+1/4/f/d*ln((c+d*tan(f*x+e))^(1/2)*(2*(
c^2+d^2)^(1/2)+2*c)^(1/2)-d*tan(f*x+e)-c-(c^2+d^2)^(1/2))*C*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)*a*c+2/5/f/d^2*C*b*(c
+d*tan(f*x+e))^(5/2)+1/f*d/(2*(c^2+d^2)^(1/2)-2*c)^(1/2)*arctan(((2*(c^2+d^2)^(1/2)+2*c)^(1/2)-2*(c+d*tan(f*x+
e))^(1/2))/(2*(c^2+d^2)^(1/2)-2*c)^(1/2))*B*b+1/f*d/(2*(c^2+d^2)^(1/2)-2*c)^(1/2)*arctan(((2*(c^2+d^2)^(1/2)+2
*c)^(1/2)-2*(c+d*tan(f*x+e))^(1/2))/(2*(c^2+d^2)^(1/2)-2*c)^(1/2))*C*a+1/f*d/(2*(c^2+d^2)^(1/2)-2*c)^(1/2)*arc
tan((2*(c+d*tan(f*x+e))^(1/2)+(2*(c^2+d^2)^(1/2)+2*c)^(1/2))/(2*(c^2+d^2)^(1/2)-2*c)^(1/2))*A*a-1/f/(2*(c^2+d^
2)^(1/2)-2*c)^(1/2)*arctan(((2*(c^2+d^2)^(1/2)+2*c)^(1/2)-2*(c+d*tan(f*x+e))^(1/2))/(2*(c^2+d^2)^(1/2)-2*c)^(1
/2))*B*a*c+1/f/(2*(c^2+d^2)^(1/2)-2*c)^(1/2)*arctan(((2*(c^2+d^2)^(1/2)+2*c)^(1/2)-2*(c+d*tan(f*x+e))^(1/2))/(
2*(c^2+d^2)^(1/2)-2*c)^(1/2))*C*b*c+1/f/(2*(c^2+d^2)^(1/2)-2*c)^(1/2)*arctan(((2*(c^2+d^2)^(1/2)+2*c)^(1/2)-2*
(c+d*tan(f*x+e))^(1/2))/(2*(c^2+d^2)^(1/2)-2*c)^(1/2))*B*(c^2+d^2)^(1/2)*a-1/f/(2*(c^2+d^2)^(1/2)-2*c)^(1/2)*a
rctan(((2*(c^2+d^2)^(1/2)+2*c)^(1/2)-2*(c+d*tan(f*x+e))^(1/2))/(2*(c^2+d^2)^(1/2)-2*c)^(1/2))*C*(c^2+d^2)^(1/2
)*b-1/f/(2*(c^2+d^2)^(1/2)-2*c)^(1/2)*arctan(((2*(c^2+d^2)^(1/2)+2*c)^(1/2)-2*(c+d*tan(f*x+e))^(1/2))/(2*(c^2+
d^2)^(1/2)-2*c)^(1/2))*A*b*c+1/f/(2*(c^2+d^2)^(1/2)-2*c)^(1/2)*arctan(((2*(c^2+d^2)^(1/2)+2*c)^(1/2)-2*(c+d*ta
n(f*x+e))^(1/2))/(2*(c^2+d^2)^(1/2)-2*c)^(1/2))*A*(c^2+d^2)^(1/2)*b+1/f/(2*(c^2+d^2)^(1/2)-2*c)^(1/2)*arctan((
2*(c+d*tan(f*x+e))^(1/2)+(2*(c^2+d^2)^(1/2)+2*c)^(1/2))/(2*(c^2+d^2)^(1/2)-2*c)^(1/2))*A*b*c+1/f/(2*(c^2+d^2)^
(1/2)-2*c)^(1/2)*arctan((2*(c+d*tan(f*x+e))^(1/2)+(2*(c^2+d^2)^(1/2)+2*c)^(1/2))/(2*(c^2+d^2)^(1/2)-2*c)^(1/2)
)*B*a*c+1/f/(2*(c^2+d^2)^(1/2)-2*c)^(1/2)*arctan((2*(c+d*tan(f*x+e))^(1/2)+(2*(c^2+d^2)^(1/2)+2*c)^(1/2))/(2*(
c^2+d^2)^(1/2)-2*c)^(1/2))*C*(c^2+d^2)^(1/2)*b-1/f/(2*(c^2+d^2)^(1/2)-2*c)^(1/2)*arctan((2*(c+d*tan(f*x+e))^(1
/2)+(2*(c^2+d^2)^(1/2)+2*c)^(1/2))/(2*(c^2+d^2)^(1/2)-2*c)^(1/2))*A*(c^2+d^2)^(1/2)*b-1/f/(2*(c^2+d^2)^(1/2)-2
*c)^(1/2)*arctan((2*(c+d*tan(f*x+e))^(1/2)+(2*(c^2+d^2)^(1/2)+2*c)^(1/2))/(2*(c^2+d^2)^(1/2)-2*c)^(1/2))*B*(c^
2+d^2)^(1/2)*a-1/f/(2*(c^2+d^2)^(1/2)-2*c)^(1/2)*arctan((2*(c+d*tan(f*x+e))^(1/2)+(2*(c^2+d^2)^(1/2)+2*c)^(1/2
))/(2*(c^2+d^2)^(1/2)-2*c)^(1/2))*C*b*c-1/f*d/(2*(c^2+d^2)^(1/2)-2*c)^(1/2)*arctan((2*(c+d*tan(f*x+e))^(1/2)+(
2*(c^2+d^2)^(1/2)+2*c)^(1/2))/(2*(c^2+d^2)^(1/2)-2*c)^(1/2))*B*b-1/f*d/(2*(c^2+d^2)^(1/2)-2*c)^(1/2)*arctan((2
*(c+d*tan(f*x+e))^(1/2)+(2*(c^2+d^2)^(1/2)+2*c)^(1/2))/(2*(c^2+d^2)^(1/2)-2*c)^(1/2))*C*a-2/3/f/d^2*C*(c+d*tan
(f*x+e))^(3/2)*b*c

________________________________________________________________________________________

Maxima [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c+d*tan(f*x+e))^(1/2)*(a+b*tan(f*x+e))*(A+B*tan(f*x+e)+C*tan(f*x+e)^2),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c+d*tan(f*x+e))^(1/2)*(a+b*tan(f*x+e))*(A+B*tan(f*x+e)+C*tan(f*x+e)^2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \left (a + b \tan{\left (e + f x \right )}\right ) \sqrt{c + d \tan{\left (e + f x \right )}} \left (A + B \tan{\left (e + f x \right )} + C \tan ^{2}{\left (e + f x \right )}\right )\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c+d*tan(f*x+e))**(1/2)*(a+b*tan(f*x+e))*(A+B*tan(f*x+e)+C*tan(f*x+e)**2),x)

[Out]

Integral((a + b*tan(e + f*x))*sqrt(c + d*tan(e + f*x))*(A + B*tan(e + f*x) + C*tan(e + f*x)**2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (C \tan \left (f x + e\right )^{2} + B \tan \left (f x + e\right ) + A\right )}{\left (b \tan \left (f x + e\right ) + a\right )} \sqrt{d \tan \left (f x + e\right ) + c}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c+d*tan(f*x+e))^(1/2)*(a+b*tan(f*x+e))*(A+B*tan(f*x+e)+C*tan(f*x+e)^2),x, algorithm="giac")

[Out]

integrate((C*tan(f*x + e)^2 + B*tan(f*x + e) + A)*(b*tan(f*x + e) + a)*sqrt(d*tan(f*x + e) + c), x)